Acute gastroenteritis remains one of the most common human diseases and is a major cause of morbidity and mortality worldwide. Gastroenteritis can be caused by a variety of pathogens including bacteria, parasites and viruses, however, in around 40% of cases no microbiological cause can be identified.

Of the viruses that have been shown to cause diarrheal disease in humans, there are currently five that account for the majority of viral infections: rotavirus, norovirus, sapovirus, astrovirus and enterovirus.

The evolution of diagnostic methods has progressed through electron microscopy, cell-culture, and immunosassays to very sensitive molecular methods. Each has limitations such as sensitivity, some can be time consuming, and some require several steps or the use of potentially hazardous chemicals.

The increased sensitivity of molecular assays means that a greatly reduced initial sample volume may still be useful in pathogen detection. Therefore, investigations were undertaken to assess the suitability of a swab transport system rather than faeces for the diagnosis of viral gastroenteritis disease.

METHODS

Forty faeces samples (M01-M40), known to be positive for a variety of enteric viruses were tested using two triplex PCR assays. One targeting rotavirus, norovirus genogroup I and II, and the second, the group F adenoviruses G4/G5, sapovirus and astrovirus. A further singleplex assay was used to target an internal process control (M52 bacteriophage). Positive and negative controls were included.

Each faeces sample was diluted 1:10 in phosphate buffered saline. A 200μl volume of each was inoculated into the Faecal Transwab® system (Medical Wire and Equipment), containing Cary Blair transport medium specifically developed for the detection of enteric bacteria. These samples were then held at room temperature for four hours, followed by overnight refrigerated storage in an attempt to simulate “real-life” specimen transportation and storage.

A 200μl aliquot was then extracted using the bioMérieux NucliSEN® easyMAG® automated extraction platform. A 5μl volume of each eluate was then applied to each PCR multiplex using the Applied Biosystems™ 7500 TaqMan Real time PCR system (Life Technologies®). The results derived from these were compared with those of each faeces sample when previously tested using a routine pre-extraction and extraction method.

Following the completion of the PCR, the amplification traces and cycle threshold (Ct) values were examined for each of the targets, including the internal process control (IPC). Of the forty faeces samples that underwent the routine pre-extraction preparation, all forty gave a positive result: 10 rotaviruses, 6 norovirus GI, 8 GI, 6 adenoviruses, 4 astroviruses and 6 sapoviruses. Thirty eight gave positive results for the same viral targets when using the Faecal Transwab® method with no pre-extraction preparation. Using the swab method, an astrovirus (Ct 27.8) and a sapovirus (Ct 20.6) were not detected. This M52 IPC was detected in all forty samples, with both methods.

All samples that gave a positive result for a particular target, were identified by presence of a typical amplification curve. The positive and negative controls gave appropriate results, therefore, validating the PCR run. The Ct values are shown for each target in Tables 1. and 2., comparing the routine faeces sample protocol with those that underwent the routine pre-extraction preparation and a further singleplex assay was used to target an internal process control (M52 bacteriophage). Positive and negative controls were included.

The increased sensitivity of molecular assays means that a greatly reduced initial sample volume may still be useful in pathogen detection. Therefore, investigations were undertaken to assess the suitability of a swab transport system rather than faeces for the diagnosis of viral gastroenteritis disease.

RESULTS

The comparative Ct values of the 38 samples giving concordant positive results does not reflect any sensitivity issues when comparing the routine faeces sample protocol with that of the swab system.

CONCLUSIONS

The use of molecular detection methods has greatly improved our ability to diagnose viral causes of enteric infections, with increased sensitivity allowing for sample processing to be rationalised. The use of swab based systems reduces the amount of sample required and can negate the need to perform pre-extraction procedures that may be time consuming, costly and involve hazardous chemicals. Although sensitivity may look to be slightly compromised when compared to routine methods, this may be due to the nature of the sample, or inappropriate storage of the positive material containing original samples used to simulate real-life specimens, rather than the sampling process.

On examination of the results using either the routine faecal extraction method or the Faecal Transwab® method, the same viral targets were detected in 38/40 samples. The two detected following the routine method only, one astrovirus and one sapovirus, gave Ct values (27.8 and 20.6 respectively) indicating a reasonably high concentration of virus in the sample.

The comparative Ct values of the 38 samples giving concordant positive results does not reflect any sensitivity issues when using the Faecal Transwab® system compared to the routine method of processing.

In two cases no target viruses were detected when using the swab method of sampling. It may be that any differences could be as a result of either viral distribution in non-homogeneous sample types, or be down to the fact that prolonged storage between the application of the two extraction methods may have led to sample degradation, rather than a reduction in sensitivity. A lack of sample material prevented any further investigation of this anomaly.

The detection of the internal process control in all samples, including those two where no virus could be detected, provides evidence that PCR inhibition was not encountered and that extracted template was added to each PCR reaction.

ACKNOWLEDGEMENTS

Medical Wire & Equipment Co. (Bath) Ltd.
Professor John Magee – Public Health England, Newcastle Laboratory
Dr Andrew Sails – Public Health England, Newcastle Laboratory