Efficacy of a New Sigma-Swab Transport System (Medical Wire) in Maintaining Viability of Wound Pathogens.

Edwards-Jones V, Stuczen M, Manchester Metropolitan University, United Kingdom

Introduction

Different swab systems are used to transport a variety of specimen types to the diagnostic laboratory and these systems often differ depending upon the category of organism being investigated e.g. bacteria, viruses or fungi. The ideal swab system must absorb organisms from the infection site, maintain viability during transport and allow release of organisms from the swab to the appropriate media during cultural techniques. Liquid and gel-based swab systems have been used for many years, but have limitations as the specimen is diluted by immersion within the liquid or gel. The Sigma-swab is a new, medium free transport system and the absence of transport medium means there is no dilution of the specimen. Also, this swab system can be used for bacterial, viral and fungal culture and additionally can be used in modern molecular testing methods, e.g. PCR.

Three quantifiable parameters influence the performance of specimen transport: time, temperature and quality of transport swab. Additionally, during wound surface swabbing it is likely, that nutrients (bodily fluids and skin cells) as well as bacteria will be transferred to swab causing overgrowth during transport.

In this study, these parameters were evaluated using the standard M40-A (CLSI) method and the effect of nutrients and mixtures of bacteria, reflecting a clinical situation was also assessed.

Methods

- A suspension from a freshly grown isolate of each strain (Staphylococcus aureus - NCTC 6571, Escherichia coli – ATCC 8739, Pseudomonas aeruginosa – NCTC 6749) and Bacteroides fragilis (NCTC 9343) was prepared in sterile saline diluted 1:10. Serial 10-fold dilutions were prepared from the suspension and plated onto nutrient agar. The plates were incubated at 37°C for 24, and colony forming units counted to confirm inoculum concentration.
- Swabs were placed into the saline suspension for 10 sec allowing the fluid to absorb and then inserted back into the transport device.
- Swabs were incubated at room temperature and at 4°C for 0, 24h and 48h.
- After the appropriate incubation period each swab was removed and placed into 1 ml of sterile saline and mixed for 1 min.
- Serial dilutions were inoculated onto the nutrient agar using spiral plater (Don Whitley Scientific, BS5687).
- All plates were incubated at 37°C for 24h in appropriate aerobic and anaerobic conditions.
- After incubation, a quantitative count was performed using Acollyte counter (Don Whitley Scientific).
- All experiments were carried out in triplicate.
- All experiments were repeated using nutrient broth instead of saline to reflect the effect of nutrients.
- All experiments were repeated using mixtures of the four organisms.

Discussion/ Conclusion

Loss of viability during transport will have a negative effect on bacterial culture results, especially when they are present in low numbers, also, the presence of nutrients can cause overgrowth during the transport. The perfect transport device should maintain viability of bacteria and prevent overgrowth. The Medical Wire Sigma-swab met acceptance criteria at both storage temperatures for all isolates tested with excellent results of recovery.

References

2. Sarina M, Lawrence D.M. Comparative Evaluation of Two New Amies Swab Transport Systems BD CultureSwab MaxV(+) (Copan) and the Fisherfinest (Starplex) Swab. ASM 105th General Convention, Atlanta, 2005.

The Sigma Swabs were provided by Medical Wire & Equipment.