Short report

New screening method to detect carriage of carbapenemase-producing Enterobacteriaceae in patients within 24 hours

N.M. Hanemaaijer¹,²,*, R.H.T. Nijhuis¹,†, B.J. Slotboom¹, E.M. Mascini¹, A.A. van Zwet¹

¹ Department of Medical Microbiology and Medical Immunology, Rijnstate, Velp, The Netherlands
² Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands

ARTICLE INFO

Article history:
Received 6 October 2013
Accepted 18 March 2014
Available online xxx

Keywords:
Active surveillance
Carbapenemase-producing Enterobacteriaceae
Carbapenemases
Real-time polymerase chain reaction
Screening

SUMMARY

Rapid identification of patients colonized with carbapenemase-producing Enterobacteriaceae (CPE) is essential to prevent introduction and the spread of CPE in the hospital. This article presents the results of a new screening method to detect patients colonized with CPE within 24 h after hospital admission. From high-risk patients rectal and throat swabs were collected and incubated overnight, after which DNA was isolated and tested for the most prevalent CPE genes (KPC, NDM, OXA-48, VIM and IMP) by a ligation-mediated real-time polymerase chain reaction. In 14 months 454 patients were screened; in six patients CPE were detected (carriage rate 1.3%).

Introduction

Carbapenemase-producing Enterobacteriaceae (CPE) have emerged rapidly and extensively worldwide. Invasive infections with carbapenem-resistant strains are associated with high mortality rates (up to 40–50%), emphasizing the need for fast and accurate detection. In accordance with the Dutch meticillin-resistant Staphylococcus aureus (MRSA) policy, known as ‘search and destroy’, patients suspected of colonization by CPE should be hospitalized in single rooms, applying contact isolation procedures to prevent dissemination of CPE to other patients.

Since there has been documentation of high CPE prevalence in widespread geographical regions, screening for asymptomatic carriers should at least be performed in all patients who have been hospitalized in a foreign hospital, as described in the national guideline ‘Multi-resistant micro-organisms’ by the Dutch Working Party of Infection Prevention.

The strategy as recommended in the Dutch guideline for the detection of highly resistant micro-organisms is a two-step procedure that consists of a screening step, based on the detection of reduced susceptibility to carbapenems, followed...
by phenotypic and genotypic confirmation steps. Screening for gastrointestinal colonization of CPE has been shown to be helpful in reducing the incidence and secondary transmission in the hospital.2,3 Unfortunately, there is no strong evidence on the best screening strategy to achieve this.4

This article presents the results of a new screening method to detect carriage of CPE in patients within 24 h during a 14-month period.

Methods

Screening method

A rectal swab and a throat swab were collected and transported in \(\sum\)-Transwab8 medium to the laboratory according to the manufacturer’s guidelines (MW&E, Corsham, UK). A volume of 100 \(\mu\)L of both the \(\sum\)-medium from the rectal swab and of the \(\sum\)-medium from the throat swab were incubated together in two different broths each (0.25 \(\mu\)g/mL ertapenem with 50 \(\mu\)g/mL vancomycin and 2 \(\mu\)g/mL ceftazidime with 50 \(\mu\)g/mL vancomycin). After overnight incubation (35 \(\pm\) 2 °C), 250 \(\mu\)L of each of the two broths were merged and mixed well. Following a wash step and subsequent centrifugation (1 min, 14,000 rpm), the pellet was suspended in 100 \(\mu\)L of the enzyme achroneopeptidase and 20 \(\mu\)L internal control (IC). After incubation for 15 min at 37 °C followed by 5 min at 95 °C and centrifugation (1 min, 14,000 rpm), the supernatant was used for detection of the most prevalent carbapenemase genes in Gram-negative bacteria (KPC, NDM, OXA-48, VIM and IMP) using the Check-MDR Carba assay (Check-Points, Wageningen, The Netherlands). The Check-MDR Carba assay was executed according to the manufacturer’s guidelines. To each run, a negative isolation control was added to control possible inhibition in each sample. A sample was considered inhibited when the Ct-value of the IC of the corresponding sample was more than two Ct-values higher than the IC of the negative isolation control.

Culture

In the case of a positive result with the Check-MDR Carba assay, both broths were subcultured on Columbia blood agar and MacConkey agar (both Oxoid, Basingstoke, UK). The species were determined with Matrix-assisted laser desorption—ionization time of flight mass spectrometry (MALDI-TOF MS, Bruker Daltonik GmbH, Bremen, Germany) and antibiotic susceptibility was measured by Vitek2 (bioMérieux, Marcy l’Étoile, France) and confirmed by E-test. Strains were sent to the Dutch National Institute for Public Health and the Environment (RIVM) for identification of the specific class of \(\beta\)-lactamase.

Patient population

After in-house validation, the method was implemented for routine screening on CPE high-risk patients. We defined a high-risk patient as any patient who had been hospitalized in a foreign hospital in the preceding two months. From these patients a throat swab and a rectal swab were collected. The detection of CPE was subsequently performed as described above.

Results

A total of 465 throat and rectal samples from 454 different patients who had been hospitalized abroad were screened between 1st January 2012 and 30th April 2013. Results for the detection of CPE were all available within 24 h. For 384 (85%) of the patients, the country of hospitalization was known. Most patients had been hospitalized in western and southern Europe.

In six of the 454 patients CPE were detected (carriage rate 1.3%). Five patients were colonized with one CPE and one patient with three different isolates harbouring a carbapenemase gene. These patients were screened because of previous hospitalization in southern Europe (Italy, Greece), Africa (Morocco, Egypt) or Asia (Jordan). Patient data are recorded in Table 1.

<table>
<thead>
<tr>
<th>Detection of CPE in Patients Who Had Been Hospitalized Abroad</th>
<th>Carriage Rate %</th>
<th>Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPE detected in six of the 454 patients</td>
<td>1.3</td>
<td>Western and Southern Europe</td>
</tr>
</tbody>
</table>

This article describes the routine application of a new screening method to detect carriage of CPE in patients who had been hospitalized abroad.

In the screening method, we used an overnight broth enrichment, followed by real-time polymerase chain reaction for the detection of CPE. Other studies, including the Dutch guidelines, use selective media in the screening step.5 In this study, the Check-MDR Carba was selected since it was the only commercially available assay able to detect the most prevalent carbapenemase genes (KPC, NDM, OXA-48, VIM and IMP) in one reaction. The choice of this assay was supported by a recent evaluation demonstrating 100% specificity and sensitivity using a wide variety of strains carrying different carbapenemase genes \textit{in vitro}.6 Despite an excellent performance, a limitation of this assay is the inability to detect the precise type of carbapenemase. Furthermore, as with all molecular assays, novel unidentified carbapenemase genes may not be detected using this assay.

A recent algorithm for carbapenemase detection suggested a three-step method in which an isolate is screened on a special medium, such as the ‘Supercarba’ medium.7 Thereafter, the Carba NP test (based on in-vitro hydrolysis of a carbapenem) is performed and subsequently the carbapenemase genes are detected and typed by molecular identification. The results are available within 24 h, which is comparable to our approach. One disadvantage of our screening method is the higher cost associated with molecular diagnostics. However, Tijet et al. recently reported an evaluation of the Carba NP test and confirmed its 100% specificity, but the sensitivity and negative predictive value were 72.5% and 69.2% respectively.8 Mucoid strains and enzymes with low carbapenemase activity (especially \(\texttt{bla}_{OXA-48}\)) were associated with false-negative results, which is a serious limitation since OXA-48 is emerging globally and is one of the major clinically relevant carbapenemases. This is underlined by the results of our study, in which the majority of detected isolates were actually OXA-48-producing isolates.
In conclusion, this study reports the results of a new screening method to identify CPE in patients within 24 h. Since early identification and isolation of carriers are key components of an effective infection control strategy in hospitals, this method may be a major improvement in the challenge to reduce the spread of CPE.

Conflict of interest statement
A.A. van Zwet is an advisor for Check-Points.

Funding sources
None.

References
2. NVMM Guideline Laboratory detection of highly resistant microorganisms, version 2.0; 2012. Available at: http://www.nvww.nl

Table I
Epidemiological data for detected carbapenemase-producing Enterobacteriaceae isolates

<table>
<thead>
<tr>
<th>Patients: sex, age, country</th>
<th>Date</th>
<th>Isolate</th>
<th>Carbapenemase</th>
<th>MIC meropenem (µg/mL)</th>
<th>Patient information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male, 60 years,</td>
<td>09/08/2012</td>
<td>Klebsiella</td>
<td>KPC</td>
<td>>32</td>
<td>Hospitalization for two weeks including one week ICU in Italy after an out-of-hospital reanimation.</td>
</tr>
<tr>
<td>The Netherlands</td>
<td></td>
<td>pneumoniae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female, 61 years, Greece</td>
<td>05/11/2012</td>
<td>K. pneumoniae</td>
<td>KPC</td>
<td>>32</td>
<td>Hospitalization for 3.5 months including ICU in Greece because of respiratory failure due to an exacerbation of COPD. Before hospitalization already living in Greece for several years.</td>
</tr>
<tr>
<td>Male, 85 years, Morocco</td>
<td>27/12/2012</td>
<td>K. pneumoniae</td>
<td>OXA-48</td>
<td>12</td>
<td>Hospitalization including ICU in Morocco because of gastrointestinal bleeding. Before hospitalization already living in Morocco for several years.</td>
</tr>
<tr>
<td>Female, 79 years, Morocco</td>
<td>14/01/2013</td>
<td>Enterobacter</td>
<td>OXA-48</td>
<td>6</td>
<td>Hospitalization for 2–3 months in Morocco because of a CVA and a myocardial infarction. Before hospitalization already living in Morocco for several years.</td>
</tr>
<tr>
<td>Female, 79 years, Morocco</td>
<td></td>
<td>cloacae</td>
<td></td>
<td></td>
<td>Hospitalization including surgery in Egypt for an acute herniated disc.</td>
</tr>
<tr>
<td>Male, 58 years,</td>
<td>21/01/2013</td>
<td>K. pneumoniae</td>
<td>OXA-48</td>
<td>16</td>
<td>Hospitalization for 2.5 weeks in Jordan because of pneumonia.</td>
</tr>
<tr>
<td>The Netherlands</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male, 53 years,</td>
<td>20/03/2013</td>
<td>K. pneumoniae,</td>
<td>OXA-48</td>
<td>1.5, 2, 0.75, respectively</td>
<td>Hospitalization for 2.5 weeks in Jordan because of pneumonia.</td>
</tr>
<tr>
<td>The Netherlands</td>
<td></td>
<td>Escherichia coli (2×)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIC, minimum inhibitory concentration; ICU, intensive care unit; COPD, chronic obstructive pulmonary disease; CVA, cerebrovascular accident.